Encoding through generalized polynomial codes

نویسندگان

  • T. SHAH
  • A. KHAN
  • A. A. ANDRADE
چکیده

This paper introduces novel constructions of cyclic codes using semigroup rings instead of polynomial rings. These constructions are applied to define and investigate the BCH, alternant, Goppa, and Srivastava codes. This makes it possible to improve several recent results due to Andrade and Palazzo [1]. Mathematical subject classification: 18B35, 94A15, 20H10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient encoding via Gröbner bases and discrete Fourier transforms for several kinds of algebraic codes

Abstract—Novel encoding scheme for algebraic codes, such as codes on algebraic curves, multidimensional cyclic codes, and hyperbolic cascaded Reed–Solomon codes, is proposed with numerical examples. We make use of the 2-dimensional inverse discrete Fourier transform, which generalizes the Mattson–Solomon polynomial for Reed–Solomon codes. We also generalize the workings of the generator polynom...

متن کامل

Skew Generalized Quasi-Cyclic Codes Over Finite Fields

In this work, we study a class of generalized quasi-cyclic (GQC) codes called skew GQC codes. By the factorization theory of ideals, we give the Chinese Remainder Theorem over the skew polynomial ring, which leads to a canonical decomposition of skew GQC codes. We also focus on some characteristics of skew GQC codes in details. For a 1-generator skew GQC code, we define the parity-check polynom...

متن کامل

Automorphisms and Encoding of AG and Order Domain Codes

We survey some encoding methods for AG codes, focusing primarily on one approach utilizing code automorphisms. If a linear code C over Fq has a finite abelian group H as a group of automorphisms, then C has the structure of a module over a polynomial ring P. This structure can be used to develop systematic encoding algorithms using Gröbner bases for modules. We illustrate these observations wit...

متن کامل

Codes through Monoid Rings and Encoding

Cazaran and Kelarev [2] have given necessary and sufficient conditions for an ideal to be the principal; further they described all finite factor rings Zm[X1, · · · , Xn]/I, where I is an ideal generated by an univariate polynomial, which are commutative principal ideal rings. But in [3], Cazaran and Kelarev characterize the certain finite commutative rings as a principal ideal rings. Though, t...

متن کامل

Systematic encoding via Grobner bases for a class of algebraic-geometric Goppa codes

Any linear code with a nontrivial automorphism has the structure of a module over a polynomial ring. The theory of Griihner bases for modules gives a compact description and implementation of a systematic encoder. We present examples of algebraic-geometric Goppa codes that can be encoded by these methods, including the one-point Hermitian codes. Index TermsSystematic encoding, algebraic-geometr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011